Genomic, Evolutionary and Functional Analyses of Diapause in Drosophila Melanogaster
نویسندگان
چکیده
Understanding the genetic basis of adaptation has been and remains to be one major goal of ecological and evolutionary genetics. The variation in diapause propensity in the model organism Drosophila melanogaster represents different life-history strategies underlying adaptation to regular and widespread environmental heterogeneity, thus provides an ideal model to study the genetic control of ecologically important complex phenotype. This work employs global genomic and transcriptomic approaches to identify genetic polymorphisms co-segregating with diapause propensity, as well as genes that are differentially regulated at the transcriptional level as a function of the diapause phenotype. I show that genetic polymorphisms cosegregating with diapause propensity are found throughout all major chromosomes, demonstrating that diapause is a multi-genic trait. I show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. I also demonstrate that genetic polymorphisms co-segregating with diapause propensity, as well as genes differentially expressed as a function of diapause are enriched for clinally varying and seasonal oscillating SNPs, supporting the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures. In addition to global genomic and transcriptomic screens, I also performed functional analysis of one candidate polymorphism on the gene Crystalllin, which represents an intersection of multiple global screens related to seasonal adaptation. I show that this polymorphism affects patterns of gene expression and a subset of fitness-related phenotypes including diapause, in an environmentspecific manner. Taken together, this work provide a holistic view of the genetic basis of a complex trait underlying climatic adaptation in wild populations of D. melanogaster, linking genetic polymorphism, gene regulation, organismal phenotype, population dynamics and environmental parameters. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Biology First Advisor Paul S. Schmidt
منابع مشابه
Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملA ricle Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic prof...
متن کاملToxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)
Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...
متن کاملProposal for the Sequencing of Drosophila yakuba and D. simulans
Overview Comparative genome sequencing has the greatest impact on biology when the targeted genomes impinge directly on analysis or interpretation of the human genome or the genome of a genetic model system. Comparative genomics may also shed light on the genetic and evolutionary mechanisms that determine genome organization and composition. The most obvious benefit of comparative genomics has ...
متن کامل